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intensit6s int6gr6es des r6flexions de Bragg permet de 
d&erminer le module des coefficients de Fourier de 
f(r).  La d&ermination de la structure se fait par ap- 
proximations successives: on cherche une fonction 
dont les coefficients de Fourier ont m~me module que 
ceux de f(r),  et cela revient ~t r6soudre l '6quation 

f ( r ) * f ( - r ) = P ( r )  , 

P(r) &ant la fonction de Patterson. Si le cristal n'est 
pas parfaitement ordonn6, on ne peut plus d6finir les 
coefficients de Fourier de sa densit6 61ectronique. La 
mesure des intensit6s int6gr6es des r6flexions s61ectives 
permet de construire la fonction de Patterson appa- 
rente, Pa(r); c'est une fonction p6riodique qui contient 
routes les donn6es exp6rimentales; elle s'identifie h la 
fonction de Patterson quand le cristal est ordonn6; 
elle peut varier en fonction de la largeur du domaine 
d'int6gration au voisinage de chaque noeud: les do- 
maines d'int6gration doivent &re assez larges pour que 
Pa(r) soit ind6pendante d'une petite variation du vo- 
lume des domaines d'int6gration. Si la structure n'est 
pas tr~s simple, il faut commencer par la d6terminer 
grossi~rement en appliquant les m6thodes classiques, 
c'est4t-dire en r6solvant l '6quation 

Pa(r )=f ( r ) , f ( - r )  . 

La solution trouv6e f(r )  est p6riodique et ne repr6- 
sente pas exactement la structure &udi6e. Pourtant, 
elle permet d'obtenir des indications nombreuses sur 
la structure r6elle, et dans les cas, fr6quents, off l 'ordre 
est ~t grande distance, elle repr6sente une structure 
'moyenne'.  Si l 'ordre est ~ 'moyenne distance', Pa(r) 
apparait comme la superposition des fonctions de Pat- 
terson des divers types de structure que l 'on peut trou- 
ver localement dans un domaine ordonn6, f(r)  peut 
alors contenir des anomalies (probabilit6s de pr6sence 
n6gatives par exemple) qui interdisent de la consid6rer 
comme une 'structure moyenne'.  L'interpr6tation de 

ces anomalies permet d'obtenir des indications sur 
l'6tat d'ordre r6el du cristal. La variation de Pa(r) en 
fonction des dimensions des domaines d'int6gration de 
l'intensit6 dans l'espace r6ciproque permet l'6tude de 
la r6partition des fautes dans certains cas: nous avons 
montr6, sur un module simple h deux dimensions com- 
ment on pouvait rendre compte de certaines extinctions 
ou de l'61argissement d 'un groupe donn6 de r6flexions 
et nous avons retrouv6 certains r6sultats classiques 
concernant les fautes d'empilement dans les assem- 
blages hexagonaux compacts. Enfin, nous avons mon- 
tr6 comment l'&ude de la fonction Pa(r) permettait 
d'interpr&er les r6sultats d'une d&ermination de la 
structure d 'un compos6 qui pr6sente une surstructure 
et dont la sym&rie n'est pas connue avec certitude; 
en particulier, nous avons 6tabli dans quelle mesure 
la valeur finale du facteur R 6tait un test de validit6 
de la sym6trie du module utilis6. 
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The correction of measured integrated Bragg intensities for first-order thermal diffuse scattering was 
considered in an earlier paper [Cooper & Rouse, Acta Cryst. (1968). A24, 405] using an approximate 
method, valid for pseudo-isotropic materials. A method is now derived for the evaluation of the correc- 
tion for a crystal of any symmetry, allowing for the contributions from first- and second-order scattering 
for X-rays or neutrons. Allowance for the effects of experimental resolution is also considered. 

Introduction 

In an earlier paper (Cooper & Rouse, 1968) we have 
considered the correction of measured integrated Bragg 

intensities for first-order thermal diffuse scattering 
(TDS) in the isotropic approximation. It was assumed 
that the TDS contribution to the integrated intensity 
can be averaged over a sphere before integration over 
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the appropriate volume in reciprocal space, in which 
case the TDS correction becomes directly proportional 
to a function of the elastic constants which is the same 
for all reflexions. This approximation is valid only for 
crystals in which the elastic anisotropy is small, and 
the appropriate function of the elastic constants was 
given for a pseudo-isotropic cubic crystal. In the present 
paper we therefore consider the extension of the anal- 
ysis to the general case for a crystal of any symmetry. 

The evaluation of a correction for TDS can be con- 
sidered in two parts, the derivation of the relevant 
scattering cross-section and the integration of this over 
the volume in reciprocal space appropriate to the scan 
used (see, e.g. Cooper, 1969; Cochran, 1963; Willis, 
1969). In deriving the cross-section we shall make the 
following assumptions: 

1. Optical modes and processes involving three or 
more phonons are assumed to be corrected for ade- 
quately by the normal background correction. 

2. We assume that only low frequency modes are 
important and that we can therefore ignore dispersion 
effects, taking the frequency of a mode to be propor- 
tional to its wave vector: 

co~(q) = I V~(q)lq (1) 

where co~(R), Vj(q) and q are the frequency, velocity 
and wave vector respectively of the mode (j, q). 

3. We consider only the classical, high temperature 
region for which each mode has an energy knT, where 
kn is Boltzmann's constant and T is the absolute tem- 
perature. 

One-phonon scattering 
X-rays 

In a one-phonon scattering process the wave vector 
of the phonon is related to the scattering vector Q by 
the equation corresponding to the conservation of mo- 
mentum, viz. 

B - q = Q = k - k 0  (2) 

where k0 is the wave vector of the incident radiation 
(=  21r/20), k is the wave vector of the scattered radia- 
tion and B is a reciprocal lattice vector for Bragg re- 
flexion. 

The energy of the phonon is given by: 

hc~j(q)= +_ h c ( k -  ko) (3) 

where e is the velocity of light and the + and - signs 
refer to phonon absorption and phonon emission re- 
spectively. In the case of X-ray scattering this is neg- 
ligible compared with the energy of the X-rays and we 
can therefore consider k = k0. 

The cross-section for one-phonon scattering of X- 
rays associated with low energy acoustic modes is given 
by Cooper (1969), equation (12), and if we equate Ej(q), 
the energy of the mode (j, q), to kBT we can write the 
cross-section as: 

ida(q) ~ 3 COS 2 0~j (q) - NQZ kBTIF(Q)[ z X (4) aa-] t mq z j=1 Vj2(q) ' 

where N is the number of unit cells in the crystal, m 
is the mass per unit cell, F(Q) is the structure factor 
for Bragg scattering, and cq(q) is the angle between the 
polarization direction of the mode (j, q) and Q. 

To obtain the TDS contribution to the integrated 
intensity we must integrate this cross-section over the 
volume in reciprocal space which is swept out during 
the scan. If we further assume that, since only low 
frequency modes are important, q ~ Q  and we can 
therefore replace Q by B, the TDS intensity can be 
written as: 

l 3 cos 2 a,j (q) du dv 11-- NkBTm IF(B)lZB2 15- i~=1 VjZ(q) dw, (5) 

where du is an element of angle through which the 
crystal is rotated during a scan and dv and dw are 
elements of vertical and horizontal divergence angles 
respectively in the scattered beam (see Cooper & 
Rouse, 1968), and cfj(q) is the angle between the po- 
larization direction of the mode (j, q) and B. 

Neutrons 
For thermal neutron scattering the energy of the 

neutrons is comparable with that of the phonons: 

hZ 
ho~(q)= + 2-m~ (k2-k°2) (6) 

where rn• is the mass of the neutron. 
The cross-section for one phonon scattering is then: 

dr2 ] ,  = 2-m-~-z ko IF(Q)[Z 

3 E~(q) + ½hc~(q) cos 2 ~(q) (7) 
× Z - --- 

]=1 IJJ(t01 D2(q) 

[see Cooper (1969), equation (19)] where 

d[En _+ hw~(q)] ' (8) 
IJj(q)] -- dEn En+ hcoj(q)----- 0 

En is the change in energy of the neutron and the + 
and - signs in equations (7) and (8) refer to phonon 
emission and phonon absorption respectively. 

The Jacobian IJj(q)l can be expressed in terms of the 
velocity of the neutrons and the velocity of the mode 
concerned: 

IJJ(q)l--1 + V z 2 V n .  Vj(q) (9) 

where the signs have the same significance as in equa- 
tion (8). 

It should, however, be emphasised that in this equa- 
tion Vn is the velocity of the scattered neutrons (Waller, 
1964), since this fact has apparently been overlooked 
by a number of authors. 

In the classical region we can equate Ej(q) to kBT 
and ignore the ½hooj(q) in equation (8). If we then sum 
the cross-sections for phonon emission and phonon 
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absorption and assume as before that q ~  Q so that 
k---v k0 and Q - +  B, the integrated TDS intensity can 
be written as 

I1 NkBT. F(B)! 2B2112 . . . . . . . . . . .  
m 

3 cosZ ~,j(q) 1 
× Z . . . . . . . .  1=1 Vt2(q) l__el2(q) du dv dw, (10) 

where e~(q) = V~2Vn. V~(q). 
Comparing equation (10) with equation (5) we see 

that this intensity differs from that for X-ray scattering 
only in the insertion of the [1-c2(q)] terms and that 
in the limit as Vn>> Vj(q) it becomes identical. How- 
ever, if the velocity of the scattered neutrons is com- 
parable to the velocities of the phonons we must re- 
tain these terms in equation (10) which is then valid 
for Vn > Vl(q), except when Vn ~ V~(q). 

For slower than sound neutrons the scattering cor- 
responds to phonon absorption only when the crystal 
setting is on one side of the Bragg position and to 
phonon emission only when the setting is on the other 
side. As the crystal setting approaches the Bragg posi- 
tion the scattering surface contracts and, to a rough 
approximation, the total cross-section is essentially 
constant. In this case no correction, other than the 
normal background correction, will be necessary 
(Willis, 1969). 

We should note, however, that for faster than sound 
neutrons as Vn-+ Vj(q), e~(q)-+ 1 and the cross- 
section for phonons travelling in directions close to 
that of the scattered neutrons will become very large. 
This will give rise to apparently anomalous integrated 
intensities which will be difficult to correct reliably, 
particularly as some of the approximations involved 
in deriving equation (10) will no longer be valid, and 
it is therefore important that the neutron wavelength 
for a given experiment should be chosen to avoid this 
condition. 

Two-phonon scattering 
X-rays 

The conditions for scattering of X-rays in a two- 
phonon process are 

Q = k - k 0 = B - q  

hcoj(ql) ± ho)j(q -- q~) = _+ hc(k - ko) (11) 
where q~ and q -q~  are the wave vectors of the two 
phonons concerned. 

The scattering cross-section for this process is then: 

( dcr(q)~ NQ4x X E/(ql)E~(q-ql) 
dr2 ] 2 -  2m 2 i,y ,, co~(q,)co~(q-qi) 

× IF(Q) cos O~J(ql ) COS ~ ( q - q l ) l  2 . (12) 

The major contribution to this cross-section arises 
when the wave-vectors of the two phonons concerned 
are collinear and we can therefore approximate this to: 

da(q) ~ 7~3 NQ4 3 E](q) cos 4 ~j(q) 
dr2 /2 = 2 mz-q-ve [F(Q)I2 27 (13) j=l v1(q) 

where Vc is the volume of the unit cell (see Wooster, 
1962). 

If we assume, as before, that q ~  Q then the contribu- 
tion to the integrated intensity from two-phonon pro- 
cesses is given by: 

I2--2~3 N(kBT)Zm2vc ]F(B)12B4 f~ ql 

3 COS4(Xt] ( q )  
x 27 du dv dw (14) 

j=, v (q) 

which we can compare with equation (5) for one- 
phonon scattering. 

Except at high temperature the two-phonon scatte- 
ring cross-section is, in general, much less than that for 
one-phonon scattering and since it is proportional to 
q-a the peaking is considerably less. Hence, in many 
cases we may be justified in neglecting the two-phonon 
scattering. 

Neutrons 
For thermal neutron scattering involving two- 

phonons the energy equation is 
h 2 

hco~(q~) +_hcoj(q-ql)= + ~-m-(k2-k 2) (15) 

and we must again introduce the Jacobian into the 
scattering cross-section. 

If we assume that the approximations involved in 
deriving equations (13) and (14) are valid for the neu- 
tron case then the Jacobian will be the same as that 
for the one-phonon scattering, given by equations (8) 
and (9), and the two-phonon TDS intensity will be: 

7~ 3 N(kBT) 2 ~ 1 
I2- 2 m 2 ~  [F(B)[ZB4) -q 

3 cos4e,j (q) 1 
x 27 du dv dw (16) 

j=l v (q) 1 -   ](03 
where tl(q)= V~-2Vn • Vj(q). 

However, it should be noted that some of these ap- 
proximations may not be valid if the velocity of the 
neutrons is close to that of one or more acoustic modes. 

Evaluation of the TDS correction 

The contributions to the integrated intensity due to 
TDS are given in equations (5) and (14) for X-rays 
and equations (10) and (16) for neutrons. 

The Bragg integrated intensity I0 is given by 

I0 = NIF(B)1223 cosec 20B/Ve, (17) 

where 0B is the Bragg scattering angle. 
If we write the total integrated intensity in the form: 

I =  I0(1 +cq + a2) (18) 
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then we have, for X-rays:  

11 _ kBT  B2I 1 
al = Io /]3 cosec 20B _ q2 

3 COS 2 £ j (q )  (19) x 27 - du dv dw Qv (q) 
where 0 is the density of the crystal, and: 

Iz ~3 (kBT)Z B411 
a2= if00 = 3 23 cosec 20B _ q 

3 C O S  4 ( ~ ' J ( ( O  
x 22 du dv dw (20) 

and B has the value 4u sin OB/2. 
For  neutron scattering the expressions for ~x and ~2 

are identical except that  each term in the summations 
must  be multiplied by 1 / [1 -  e~(q)]. 

We shall define a set of or thogonal  axes x , y , z  as 
before (Cooper & Rouse, 1968), i.e. with y perpendic- 
ular to the plane containing the wave vectors of the 
incident and scattered radiation, and z parallel to the 
wave vector of the scattered radiat ion (see Fig. 1). 

We then have that  

23 cosec 20B 
du dv dw - dx dy dz (21) 

87# 

so that  we can rewrite equations (19) and (20) in the 
form: 

0C1 ~ ~ ~ -q-2 

3 cos2 ~ ' j (~  
x Z" dx dy dz (22) 

j = ,  Qvf(q) 
(kBT) z (4re sin 0BI4I 1 (23) 

a2-- 24 2 / J 

3 C O S  4 (~t ( q , )  
x 27 d x d y d z  

We can define the polarization direction of the mode 
(j, q) by its direction cosines Ij, mj, nj with respect to 
the x , y , z  axes respectively. The direction cosines of B 
are cos 0m 0, sin OB SO that  

COS O~(q)=I~ cos OB+ n~ sin OB . (24) 

The equations of mot ion for a plane elastic wave 
propagat ing in a direction q in a medium lead to the 
following equations (Jahn, 1942): 

lj mj nj 
/ / = A l l  0 V~(~--- ~-  + A12 Q V~(q)--- + A13 Q V~(q) (25a) 

lj mj nj 
mj=A12 QVf(q) +A22 ~V~-~(o~ +A23 0Vf(q)--- (25b) 

nj = A t3 lj mj nj 
oVf(q) +A23 OVa(-----q-) + A33 ----QV~(q) ' (25c) 

where Akt is given by 

Akz = ajamc'jkZm , (26) 

aj, am being the direction cosines of q (j,  m = 1, 2 or 3) 
and c'jkzm the elastic constants of the medium referred 
to the x , y , z  axes, i.e. 

C'Jklm = bjnbkpblqbmrcn pqr , (27) 

where ban etc. are direction cosines of the x , y , z  axes 
referred to the orthogonal  axes for which the elastic 
cons tants  Cnpqr are given. 

For  a crystal of general symmetry the values of Akt 
are: 

A 2 t . 2 , . 2 : . ", • . '~ : . • 11 ~ alCll -t- a2c66 -t- a3c55 -5- za2a3cs6 "-t- zala3Cl5 -t- 2ala2c16 
(28a) 

2 t . 2 t 2 t • t • 
A22 ~ al c66 "5- a2c22 + a3c44 .+ 2a2a3c24 + 2a'la3c46 -I- 2ala2c26 

(28b) 

2 t 2 : 2 " t • 
A33 = alc55 -t- a2c44 + a~c33 -{- 2a2a3c34 T 2ala3c35 + 2ala2c45 

(28c) 
2 t 2 t 2 '  : • 

A 1 2  = a l c 1 6  --~ a ~ c 2 6  --[- a 3 c 4 5  + azaa(C2s .+ C46 ) 
t • t • 

+ ala3(Cl4 + C56 ) + ala2(c12--}- (366) (28d) 

2 •  2 t 2 •  , • 
A13 = CIlCl5 + a2c46 + a3c35 + a2a3(ca6 + c45) 

"Jr" a l a 3 ( C l 3  -a t- C ; 5  ) + ala2(Cl4-Jc" c ; 6  ) ( 2 8 e )  

(a) 

z 

x=kw-z tan 0 

y=kv 
z=2ku sin 0 cos  O 

z 

x=kw+z c o t  O 

y=kv 
z=2ku sin OcosO 

(b )  

Fig. 1. Diagrams in reciprocal space illustrating the volume 
swept out for (a) co scan, (b) 0 - 2 0  scan and showing the 
system of axes used. 
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2' 2' 2" - /' • ' A23 --= alc56 + a2c24 + a3c34 + a2a3tc23 -t- c44 ) 

+ a~a3(c'~6 + c45) + a~a2(c25 + c46 ) , (28f) 

where the standard two-suffix notation is used for the 
elastic constants (Nye, 1957). 

From equations (25) we obtain the condition for 
non-zero solutions for l~, m~ and n~: 

' A a l  - 0 VT(q) A12 A13 
', A12 Azz-QVT(q) A23 

A13 A23 A33-  QVT(q ) ' 
= 0 ,  (29) 

which is a cubic equation in VT(q) leading to the three 
solutions for lj, mj and nj corresponding to the three 
polarization modes for a given q. These solutions are 
given from the velocities by the relation: 

1 
lj " mj " n j= A23(QVT(q)_AH) + Ai2-A~ : 

1 

A i3(o VT(q)- + Ai;7  
1 

~x~ i2 ( ~ , ~  (q)~-r~ i;y~/~-13~2 i . (30) 

It is necessary, in general, to solve equations (29) 
and (30) before integrating the TDS over the scanned 
volume. However, if a correction is required only for 
one-phonon X-ray scattering we can use a much more 
straightforward method which we outline below. 

Evaluation of one-phonon X-ray scattering 

From equations (22) and (24) we can see that for one- 
phonon X-ray scattering we need to evaluate, for each 
value of q, the summation 

3 COS 2 ¢X;(q) 
S o = l  

j = l  ~0 VT(q) 

3 (b cos On + nj sin 0n) 2 ~--- ,~ . . . . . . . . . . . . . . . . . . . . . . .  
j= ,  O VT(q) 

3 /7 3 
= COS 20B I . . . . . . . . . .  "~- sin 2 0B X 

j=, Q vT(q) 

3 ljnj 
+ sin 20B X - - - -  

j=, Q vT(,0 

.7 

(31a) 

(31b) 

(31c) 

The individual summations in equation (31c) can 
now be evaluated by the method given by Jahn (1942). 

Since the polarization vectors are orthogonal we can 
write from equations (25): 

3 3 17 
X l T = A  n S 

j=I j= l  0 VT(q) 

3 ljllj 
+A13 I 

3 bms 
-~- A12 

- 1  (32a) 

3 3 17 3 bm t 
Z l j m j = A l 2  Z .. . . . . . . . .  +A22 ~' 

j=t QVT(q) QVT(q) 
3 llnl 

+A23 L' - 0  
ovT(q) 

3 3 17 3 bm~ 
X lln I = A13 ,~' + A23 ~w ......... 

j=, j=,  vT(q) j=, o vT(  

+A33 I = 0 .  
j=,  vT(q) 

Hence 
3 17 

X 
o vT(q) 

3 ljnj 
I 

j=l ovT(q) 

A22 A23 

A23 A33 

A12 A22 

A13 A23 

where 

A =(A-1) l l  

A = (A-l)13, 

A = ] Ala A12 A13 
I A12 A22 A23 i 

A13 A23 A33 ! 

(32b) 

(32c) 

(33a) 

(33b) 

(34) 

is the Christoffel determinant and (A-0et denotes an 
element of the matrix A-1 inverse to A. 

In a similar way we obtain 

3 n7 An A12 [ / A_(A_1)33 (35) X = ! 
j= l  oVT(q)  A12 A22 / 

and we can rewrite equation (31) as 

Sq = cos 20B(A-On + sin z OB(A-1)33 + sin 20B(A-013 (36) 

which can be evaluated directly. 

The isotropic approximation 

In the isotropic approximation we assume that we can 
consider average velocities for the acoustic modes, 
independent of direction. In deriving these average 
velocities we need therefore consider only the case in 
which the x , y , z  axes coincide with those for which the 
elastic constants are given and it is not necessary to 
carry out the transformation given in equation (27). 

For a crystal of cubic symmetry the elastic constants 
reduce to three independent non-zero values: en 
(=C22=C33), C12 (=C13=C23) and c44 (=c55--~-~c66). Equa-  
t ions (28) therefore reduce to 

All  = al2Cll + (a~ + a])e44 

A22=a~Cll + (a~ + a~)c44 

A33 = a]Cll + (a~ + a~)c44 

A12 = ala2( c l2 + c44) 

A a3 = aaa3(e12 + e44) 

A23 = a2a3(c12 + c44) 

from which we obtain 

(37a) 

(37b) 

(37c) 

(37d) 
(37e) 

(37f) 

A-1 _ 12 4 2 2  2 2  ( )n--[a~c44+(~+a3)cnc44+(ala2+ala~) (cnc44+c~) 
2 3 2 + a2a~_(cn - c22- 2c12c44)]/A (38a) 
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(1--1)33 : [ ( 4  "~ (/24) Cuc44 "1" a~3c44 "Jl- a2a2(c21 --c22 - 2C12C44) 
+ (a~a'~ + a~a]) (cllc44 + c,~4)]/A (38b) 

Sq=½.  

with 

at-a3.)c44 + axa3(2a2- a] - a2)cxzc44 (A-1)13=[a2a3(a 2 _  2 2 2 

-ata~a3en(e12+c44)+ata2a3c12)]/A , (38e) 

where 
A - -  2 2 2 31 3 31 3CllC22__3C21C44+12C12C2 - -  a~a[a3(ctl + 2c12  + 4c44  - 

+ (axa~ + ala3 + asa3) (c2xc44 +9C~2C44__6CltC12C44) 2 2 2 2 2 2 

- 2c12c44 ) + cnc44. (39) _ 2CllCh_ C~2C44 2 2 

If we take the mean value of the numerator and 
denominator separately for each (A-0z~ we find that 

( A - %  =(A=~)33 
and (40) 

(A-gx3 = 0 ,  
and substituting the mean values in equation (36) we 
obtain: 

{bx(cn + ci2) + C44(2Cll + C44) ~"' 
l~sb2b2+½bl(e~+elz)e44+enc2 ' k(41) 

b l  = C l l  - c12 - 2c44 

b2 = ctl + 2C12 + C44 

~ t ~ i n t e g r a l  for the TDS intensity becomes that 
used in the isotropic approximation (Cooper & Rouse, 
1968). 

A value for Sq could be derived similarly for a 
pseudo-isotropic crystal of any symmetry. However, 
this would require, in the general case, the evaluation 
of over 1000 separate terms. In order to use an isotropic 
approximation in this case it would therefore seem 
preferable to estimate effective values of c11, c12 and 
c44 for use in equation (41), thus assuming a quasi- 
cubic symmetry for the elastic properties of the crystal. 
However, it should be emphasized that extreme care 
should be taken when an isotropic approximation is 
used for non-cubic crystals. 

Experimental resolution 

If we ignore the divergence of the incident beam and 
the mosaic spread of the sample then the volume of 
integration is defined directly by the ranges of the 
angles u, v and w defined by the scan range and the 
detector aperture. Both of these factors, however, will 
cause a reduction in the TDS contribution to the inte- 
grated intensity and we should replace the integration 
over the detector aperture by a weighted integration 
over the resolution function. 

The resolution function can be considered as the 
probability of detection of the radiation as a function 
of AQ when the instrument has been set to measure 
a scattering process corresponding to the scattering 
vector Q0. The determination of the resolution func- 
tion of a conventional two-crystal neutron diffrac- 
tometer and its application to diffuse scattering have 

been considered by Cooper & Nathans (1968a, b). 
These authors show that if a Gaussian approximation 
for the mosaic and collimation functions is valid the 
resolution function R(Q0 + AQ) can be considered very 
conveniently in terms of a resolution matrix M~ such 
that: 

3 3 

R(Q0+AQ)=R0exp {-½ N 22 MkzX~Xz},  (43) 
k=l  j = l  

where XI=AQ~,  X z = A Q v ,  X3=AQz  (Cooper & Na.- 
thans, 1968a). 

However, whatever the form of the resolution func- 
tion, it can be determined experimentally by means of 
a series of suitable scans through the relevant Bragg 
peak (Cooper & Nathans, 1968b). The diffuse intensity 
observed at a given setting of the diffractometer is then 
given by: 

~ I (Qo)  = 1 {la(Qo + AQ + qm) 
x M(qm)dqm)R(Qo+AQ)AQ (44) 

where the scattering cross-section is integrated over 
the mosaic spread of the sample M(qm), qm being the 
reciprocal lattice vector defining translation from the 
point of optimum Bragg reflexion. 

The nature of the resolution function for an X-ray 
diffractometer has been discussed by Cochran (1969). 
In this case it is complicated somewhat by the Kal-Ka2 
doublet but its determination and application are sim- 
ilar to those for the neutron case. 

It is clear that integration over the resolution func- 
tion at each point on the scan considerably complicates 
the evaluation of the TDS correction. However, since 
the aperture of the detector will usually be the most 
significant factor we can, in general, calculate the TDS 
contribution ignoring the other factors and then allow 
for these by repeating the calculation with the centre 
of the scan at different points in a partial resolution 
function centred on the original centre of the scan. 

Discussion 

In the present paper we have outlined the method of 
evaluation of the correction of measured integrated 
intensities for thermal diffuse scattering for a crystal 
of any symmetry, allowing for the contributions from 
one-phonon and two-phonon processes and allowing 
for experimental resolution effects. A computer pro- 
gram has been written to evaluate the special case of 
one-phonon scattering of X-rays for which the analysis 
is somewhat simpler. Although the extension of this 
program to the general case is relatively straightfor- 
ward the computation involved becomes considerable. 
In addition the allowance for resolution effects requires 
a detailed experimental determination of the resolution 
function of the instrument. 

TDS corrections evaluated by the procedures de- 
scribed here for typical experimental situations will be 
discussed in a later paper. 
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The authors are indebted to Dr B.T.M.Willis for 
pointing out the simplified derivation which can be 
used for one-phonon X-ray scattering and for his in- 
terest and encouragement. 
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The use of Neutron Resonance Scattering in the Structure Determination of Sm(BrO3)3.9H20 
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The structure of Sm(BrO3)3.9HEO has been solved by the neutron anomalous-dispersion method, 
with the use of data collected at two wavelengths. Five out of eight atoms in the asymmetric unit were 
located from the 'anomalous difference Patterson' synthesis, and the remaining three from a Fourier 
synthesis. The structure is centrosymmetric, and the signs of 78% of the reflexions were determined 
correctly from the differences in the Fobs values at the two wavelengths. 

1. Introduction 

It has been known for some time that certain isotopes 
(especially mCd  and 149Sm) when present in crystals, 
give rise to resonance scattering of thermal neutrons 
and this can be used to solve the phase problem in a 
structure analysis from neutron diffraction intensity 
data (Peterson & Smith, 1962; Ramaseshan, 1966; 
Dale & Willis, 1966). In the first reported application 
of this technique (Macdonald & Sikka, 1969), anom- 
alous scattering from the Cd atom was utilized to solve 
the structure of Cd(NO3)2.4D20. Macdonald & Sikka 
showed that the 'direct phase' method of Ramachan- 
dran & Raman (1956) and the sine Patterson approach 
of Okaya, Saito & Pepinsky (1955) can be directly 
applied in neutron diffraction. These methods were devi- 
sed originally for X-ray diffraction, where the intensities 
are measured at one wavelength. This paper is concerned 
with the third approach, that of the use of data at two 
wavelengths. Peterson & Smith (1962) pointed out that 
the real and imaginary parts of the scattering amplitude 
for lx3Cd and 1495m vary with the wavelength of the 
neutrons; the measurement of data at two different 
wavelengths would then correspond to the replacement 
of one atom of the crystal by an atom of different scat- 
tering amplitude. In this way the isomorphous replace- 
ment method can be used in neutron diffraction. 

* On leave from Bhabha Atomic Research Centre, Trombay, 
Bombay-74, India. 

The substance chosen to test the suitability of the 
two wavelength method was Sm(BrO3)3.9H20. This 
choice was dictated largely by the need to obtain a large 
single crystal, suitable for a neutron study and containing 
Sm as the anomalous scatterer. From an experimental 
point of view, Sm is preferable to Cd as the anomalous 
scatterer since the range of wavelength, over which the 
real (bs~ and imaginary (bs~) parts of the scattering 
amplitude for the Sm atom vary, lies well within the 
experimentally useful region of the thermal neutron 
spectrum from a reactor. (For Sin, resonance occurs 
at 0.92 A; for Cd it occurs at 0.67 A and on the lower 
wavelength side of the Cd resonance the neutron flux 
is extremely low.) At the start of this study, it was 
thought that this crystal would be isomorphous with 
Nd(BrO3)3.9H20, whose X-ray structure is non-centro- 
symmetric (Helmholz, 1939). Later, as no Bijvoet dif- 
ferences could be observed from Sm(BrO3)3.9H20, it 
was realized that the crystal structure was centro- 
symmetric and belonged to a different space group, 
P63/mmc, in the hexagonal system. 

2. Experimental 

Single crystals of Sm(BrO3)3.9H20 were grown by 
slow evaporation of an aqueous solution of samarium 
bromate. The crystals were pink hexagonal prisms, 
bounded by {100} and {101} faces. 

Three-dimensional neutron intensity measurements 
were made at two wavelengths with the Mark I auto- 
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