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intensités intégrées des réflexions de Bragg permet de
déterminer le module des coefficients de Fourier de
JS(r). La détermination de la structure se fait par ap-
proximations successives: on cherche une fonction
dont les coefficients de Fourier ont méme module que
ceux de f(r), et cela revient a résoudre I’équation

S (—1)=P(r),

P(r) étant la fonction de Patterson. Si le cristal n’est
pas parfaitement ordonné, on ne peut plus définir les
coefficients de Fourier de sa densité électronique. La
mesure des intensités intégrées des réflexions sélectives
permet de construire la fonction de Patterson appa-
rente, Pq(r); c’est une fonction périodique qui contient
toutes les données expérimentales; elle s’identifie & la
fonction de Patterson quand le cristal est ordonné;
elle peut varier en fonction de la largeur du domaine
d’intégration au voisinage de chaque noeud: les do-
maines d’intégration doivent étre assez larges pour que
Py(r) soit indépendante d’une petite variation du vo-
lume des domaines d’intégration. Si la structure n’est
pas trés simple, il faut commencer par la déterminer
grossi¢rement en appliquant les méthodes classiques,
c’est-a-dire en résolvant 1’équation

Po(r)=f(®)+f(—1).

La solution trouvée f(r) est périodique et ne repré-
sente pas exactement la structure étudiée. Pourtant,
elle permet d’obtenir des indications nombreuses sur
la structure réelle, et dans les cas, fréquents, ol I’ordre
est & grande distance, elle représente une structure
‘moyenne’. Si I'ordre est & ‘moyenne distance’, Pq(r)
apparait comme la superposition des fonctions de Pat-
terson des divers types de structure que ’on peut trou-
ver localement dans un domaine ordonné. f(r) peut
alors contenir des anomalies (probabilités de présence
négatives par exemple) qui interdisent de la considérer
comme une ‘structure moyenne’. L’interprétation de
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ces anomalies permet d’obtenir des indications sur
I’état d’ordre réel du cristal. La variation de Pq(r) en
fonction des dimensions des domaines d’intégration de
I'intensité dans I’espace réciproque permet I’étude de
la répartition des fautes dans certains cas: nous avons
montré, sur un modéle simple 34 deux dimensions com-
ment on pouvait rendre compte de certaines extinctions
ou de I’¢élargissement d’un groupe donné de réflexions
et nous avons retrouvé certains résultats classiques
concernant les fautes d’empilement dans les assem-
blages hexagonaux compacts. Enfin, nous avons mon-
tré comment 1’étude de la fonction Pu(r) permettait
d’interpréter les résultats d’une détermination de la
structure d’un composé qui présente une surstructure
et dont la symétrie n’est pas connue avec certitude;
en particulier, nous avons établi dans quelle mesure
la valeur finale du facteur R était un test de validité
de la symétrie du modéle utilisé.
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The Correction of Measured Integrated Bragg Intensities
for Anisotropic Thermal Diffuse Scattering
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(Received 29 January 1969)

The correction of measured integrated Bragg intensities for first-order thermal diffuse scattering was
considered in an earlier paper [Cooper & Rouse, Acta Cryst. (1968). A24, 405] using an approximate
method, valid for pseudo-isotropic materials. A method is now derived for the evaluation of the correc-
tion for a crystal of any symmetry, allowing for the contributions from first- and second-order scattering
for X-rays or neutrons. Allowance for the effects of experimental resolution is also considered.

Introduction

In an earlier paper (Cooper & Rouse, 1968) we have
considered the correction of measured integrated Bragg

intensities for first-order thermal diffuse scattering
(TDS) in the isotropic approximation. It was assumed
that the TDS contribution to the integrated intensity
can be averaged over a sphere before integration over
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the appropriate volume in reciprocal space, in which
case the TDS correction becomes directly proportional
to a function of the elastic constants which is the same
for all reflexions. This approximation is valid only for
crystals in which the elastic anisotropy is small, and
the appropriate function of the elastic constants was
given for a pseudo-isotropic cubic crystal. In the present
paper we therefore consider the extension of the anal-
ysis to the general case for a crystal of any symmetry.

The evaluation of a correction for TDS can be con-
sidered in two parts, the derivation of the relevant
scattering cross-section and the integration of this over
the volume in reciprocal space appropriate to the scan
used (see, e.g. Cooper, 1969; Cochran, 1963; Willis,
1969). In deriving the cross-section we shall make the
following assumptions:

1. Optical modes and processes involving three or
more phonons are assumed to be corrected for ade-
quately by the normal background correction.

2. We assume that only low frequency modes are
important and that we can therefore ignore dispersion
effects, taking the frequency of a mode to be propor-
tional to its wave vector:

i@ =Vi(Dlg M

where w;(q), Vj(q) and g are the frequency, velocity
and wave vector respectively of the mode (J, q).

3. We consider only the classical, high temperature
region for which each mode has an energy kg7, where
kg is Boltzmann’s constant and T is the absolute tem-
perature.

One-phonon scattering
X-rays
In a one-phonon scattering process the wave vector
of the phonon is related to the scattering vector Q by

the equation corresponding to the conservation of mo-
mentum, viz.
@

where k, is the wave vector of the incident radiation
(=27/4y), k is the wave vector of the scattered radia-
tion and B is a reciprocal lattice vector for Bragg re-
flexion.

The energy of the phonon is given by:

hoji(g)= 3)

where c is the velocity of light and the + and — signs
refer to phonon absorption and phonon emission re-
spectively. In the case of X-ray scattering this is neg-
ligible compared with the energy of the X-rays and we
can therefore consider k =k,.

The cross-section for one-phonon scattering of X-
rays associated with low energy acoustic modes is given
by Cooper (1969), equation (12), and if we equate E;(q),
the energy of the mode (J, q), to kT we can write the
cross-section as:

B—q=Q=k-k

+ he(k — ko)
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cos? aj(q)
Vi

where N is the number of unit cells in the crystal, m
is the mass per unit cell, F(Q) is the structure factor
for Bragg scattering, and ay(q) is the angle between the
polarization direction of the mode (j, ) and Q.

To obtain the TDS contribution to the integrated
intensity we must integrate this cross-section over the
volume in reciprocal space which is swept out during
the scan. If we further assume that, since only low
frequency modes are important, g<Q and we can
therefore replace Q by B, the TDS intensity can be
written as:

=",
Zim1

4

(.-

NQ ksTIF(Q)P Z
1

Jj=

cos o ,(q) W,
Z0) dudvd 5)
where du is an element of angle through which the
crystal is rotated during a scan and dv and dw are
elements of vertical and horizontal divergence angles
respectively in the scattered beam (see Cooper &
Rouse, 1968), and a's(q) is the angle between the po-
larization direction of the mode (j, q) and B.

Neutrons

For thermal neutron scattering the energy of the
neutrons is comparable with that of the phonons:

hor(Q) =

where m,, is the mass of the neutron.
The cross-section for one phonon scattering is then:

+ " e—kz )
- 2'}7,; 0

do(q) NQ? k
(52, = g, PP
5. Ei(Q) £ Shay(q) cos? a(q)
A7 el v O
[see Cooper (1969), equation (19)] where
_ d[Enthoi(@]'
Vi@l= ——3¢ £ — East heos(@)=0 ®)

E, is the change in energy of the neutron and the +
and — signs in equations (7) and (8) refer to phonon
emission and phonon absorption respectively.

The Jacobian |J;(q)] can be expressed in terms of the
velocity of the neutrons and the velocity of the mode
concerned:

i@l=1£V72Va. Vi@ ©®

where the signs have the same significance as in equa-
tion (8).

It should, however, be emphasised that in this equa-
tion Vy is the velocity of the scattered neutrons (Waller,
1964), since this fact has apparently been overlooked
by a number of authors.

In the classical region we can equate Ej(q) to kT
and ignore the 1Aw;(q) in equation (8). If we then sum
the cross-sections for phonon emission and phonon
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absorption and assume as before that g<Q so that
k — ko and Q — B, the integrated TDS intensity can
be written as

L= N@_§T|F(B) 2328 1
m g
3. cos?a's(q) 1
b2
x B 7 O 812(q)du dvdw, (10)

where ¢(qQ)=V;2V4 . Vi(q).

Comparing equation (10) with equation (5) we see
that this intensity differs from that for X-ray scattering
only in the insertion of the [1 —&2(q)] terms and that
in the limit as V5> Vj(q) it becomes identical. How-
ever, if the velocity of the scattered neutrons is com-
parable to the velocities of the phonons we must re-
tain these terms in equation (10) which is then valid
for V> Vy(q), except when Vy —> Vi(g).

For slower than sound neutrons the scattering cor-
responds to phonon absorption only when the crystal
setting is on one side of the Bragg position and to
phonon emission only when the setting is on the other
side. As the crystal setting approaches the Bragg posi-
tion the scattering surface contracts and, to a rough
approximation, the total cross-section is essentially
constant. In this case no correction, other than the
normal background correction, will be necessary
(Willis, 1969).

We should note, however, that for faster than sound
neutrons as Vi, — Vy(q), €2(qQ) —1 and the cross-
section for phonons travelling in directions close to
that of the scattered neutrons will become very large.
This will give rise to apparently anomalous integrated
intensities which will be difficult to correct reliably,
particularly as some of the approximations involved
in deriving equation (10) will no longer be valid, and
it is therefore important that the neutron wavelength
for a given experiment should be chosen to avoid this
condition.

Two-phonon scattering
X-rays
The conditions for scattering of X-rays in a two-
phonon process are

Q=k~ky=B—q
hay(qy) + hwj(q—qr) = * hc(k —ko) 11)

where q; and q—gq; are the wave vectors of the two
phonons concerned.
The scattering cross-section for this process is then:

NO* y- 5 B@E(q-ay

2m? i @ @Hq)wiq— ql)
X |F(Q) cos as(qy) cos az(q—q1)[> .

(a).-

(12)

The major contribution to this cross-section arises
when the wave-vectors of the two phonons concerned
are collinear and we can therefore approximate this to:
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73 NQ“
2 mqV,

Pz HO S

Vi@
where V. is the volume of the unit cell (see Wooster,
1962).

If we assume, as before, that g< Q then the contribu-

tion to the integrated intensity from two-phonon pro-
cesses is given by:

™ N(kBT)

(13)

(8.

L= F®)5+| ;

(14)

which we can compare with equation (5) for one-
phonon scattering.

Except at high temperature the two-phonon scatte-
ring cross-section is, in general, much less than that for
one-phonon scattering and since it is proportional to
q~! the peaking is considerably less. Hence, in many
cases we may be justified in neglecting the two-phonon
scattering.

Neutrons

For thermal neutron scattering involving two-
phonons the energy equation is
2
hof@) thofa—a) =% 5o (=) (19)
n
and we must again introduce the Jacobian into the
scattering cross-section.

If we assume that the approximations involved in
deriving equations (13) and (14) are valid for the neu-
tron case then the Jacobian will be the same as that
for the one-phonon scattering, given by equations (8)
and (9), and the two-phonon TDS intensity will be:

7 N(kBT) el 1
n=" RO
3 cos“oz (@ 1
X J dudvd 16
A Vi) 1—ag e 19

where ¢(Q=V 2V, . V;(q).

However, it should be noted that some of these ap-
proximations may not be valid if the velocity of the
neutrons is close to that of one or more acoustic modes.

Evaluation of the TDS correction

The contributions to the integrated intensity due to

TDS are given in equations (5) and (14) for X-rays
and equations (10) and (16) for neutrons.

The Bragg integrated intensity I, is given by
Iy=N|F(B)}?43 cosec 205/V, ,

where 65 is the Bragg scattering angle.
If we write the total integrated intensity in the form:

(18)

(17)

I=1y(1+ 0y +03)
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then we have, for X-rays:
Il kBT ZS 1

a= Iy 73 cosec 205 q?
3, cos? o, (q)
x X 13 du do dw 19
2@ )
where g is the density of the crystal, and:
_ L _m  (ksT) (1
%= 1T 3 J3cosec 205 B Sq
3 4
5 98 @D 4 gy dw (20)

X
=1 @*Vi(@)

and B has the value 47 sin 6p/A.

For neutron scattering the expressions for o; and a,
are identical except that each term in the summations
must be multiplied by 1/[1—&3(q)].

We shall define a set of orthogonal axes x,y,z as
before (Cooper & Rouse, 1968), i.e. with y perpendic-
ular to the plane containing the wave vectors of the
incident and scattered radiation, and z parallel to the
wave vector of the scattered radiation (see Fig.1).

We then have that

/'L ' cosec 203
o 2n

so that we can rewrite equations (19) and (20) in the
form:

du dv dw dx dy dz

2kgT (sin 93) ZS __1

“=7 A q2
3 cos?a's(q)
X ]El T(q) dx dy dz 22)
(kBT)2 47 s111 Og\*

3 4 !
x 2 @D gy g,
=1 2V
We can define the polarization direction of the mode
(j, @) by its direction cosines /;,mj,n; with respect to
the x,y,z axes respectively. The direction cosines of B
are cos g, 0, sin 0z so that

@9
The equations of motion for a plane elastic wave

propagating in a direction ¢ in a medium lead to the
following equations (Jahn, 1942):

cos a(q)=1; cos Op+ny sin Op .

l ng
Ij—Au W +A12 Vz(q) +A|3 V?(q) (25(1)
mj=Ap —prs +Axn 2; < + Ay ”’%‘ (25b)
V ((I) Vl(q) QV;(Q)
ny=A b Ay —L o Ay ,  (25¢
1=4s oyaig T o T o Y

where Ay is given by
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Axr=a;amc xim (26)
a;, am being the direction cosines of q (j,m=1, 2 or 3)
and c¢'jxm the elastic constants of the medium referred
to the x,y,z axes, i.e.

@7

where bj, etc. are direction cosines of the x,y,z axes
referred to the orthogonal axes for which the elastic
constants cppqr are given.

For a crystal of general symmetry the values of Az
are:

C'iim = binbrpbighmrCaper »

A1 =a3¢] + a3Ces + a3Css + 20,a3¢ 56+ 2a1a5¢ 5+ 2a105C 16
(28a)
Ay =a3Cee+ a3c5,+ a3Cas + 20503054+ 241a5C46 + 20105C5¢
(28b)
Azy=a3css + a3chy + 3¢5+ 20,0505, + 201a5C35 + 20105C 45
(28¢)
Arn=aicis+a5c36+ adces + aras(crs + Co)
+a1a5(ciq+Cs) T aax(ci +cge)  (28d)
A= dic)s+ @icis + a3css + 0aa(Che+ Cas)
+a1ay(cys+ Css) +ara(cia+cs6)  (28e)

x=kw-z tan@
y=kv
z=2ku sinpcos8

(a)

x=kw+z cot8
y=kv
2=2ku sin8cos o

(b)

Fig.1. Diagrams in reciprocal space illustrating the volume
swept out for (a) @ scan, (b) 8—26 scan and showing the
system of axes used.
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Azs=dicss+a3Chq+ dicsy+ aas(cys + )
+ 0103((3;6"' C;s) + alaz(C;s + (,'26) , (28f)

where the standard two-suffix notation is used for the
elastic constants (Nye, 1957).

From equations (25) we obtain the condition for
non-zero solutions for 4, my and n;:

: Au—QVf(Q) A Az ’
i Agp An—oViq) Az =0, (29)
' Ay A A33”“QV3(‘I)

which is a cubic equation in V2(q) leading to the three
solutions for /;, m; and n; corresponding to the three
polarization modes for a given q. These solutions are
given from the velocities by the relation:

I
AneVHD = A+ Aish

1
AV @)~ 4x)+ Andp’

1
Au(@VH@) —A3) + A’
It is necessary, in general, to solve equations (29)
and (30) before integrating the TDS over the scanned
volume. However, if a correction is required only for

one-phonon X-ray scattering we can use a much more
straightforward method which we outline below.

ljtmjinj=

(30)

Evaluation of one-phonon X-ray scattering

From equations (22) and (24) we can see that for one-
phonon X-ray scattering we need to evaluate, for each
value of q, the summation

3 cos? a(q)

S = RO A 3la
% 0 Gla)
3, (ly cos Op+nj sin Og)?
= y WEORUBT S U 31b
2 o 10
205 2 1 20y >
=C08 -2,z +sin STz
B2 oV 21 eV
. 30 Iy
+sin20p X —— 31c
525 @ 1)

The individual summations in equation (31¢) can
now be evaluated by the method given by Jahn (1942).

Since the polarization vectors are orthogonal we can
write from equations (25):

3 3 2 3 Im
S P=4, X L 44,5 I
e Y Z (O B =14 ()
3 Iy
RPN . o N 324
2] (320)
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3 32 Lmy
Z lmy=Ayn 5 sl Ay, & 9T
Pt i V£ O A W Z 1)
3 by
+ Ay X ——— =0 326
Az (326)
3 32 S Lmy
I hm=Ap Z —d— 4 Ay & -
j=1 7= =1 eV3(q) 20 eVi(q)
3. Im
+A43; X2 I =0 32¢
» Jj=1 V?(‘l) ( )
Hence
302 | Ay A
r 110 23:/4: A1 33q
j=10Vi@ | Ay A 4™ (334)
> Ly ' A Ay
i B ' JA=(4-1),, (33
Jj=1 QV%(‘I) Az Ay [ ™5 (336)
where
4= Ay Ar Ay
A1z Az Az 34
Az Ay Asz |

is the Christoffel determinant and (4-1)z; denotes an
element of the matrix 4! inverse to 4.
In a similar way we obtain

23? __fﬁ_ _ An A 1
j=1eV3(q) A Ay |
and we can rewrite equation (31) as
Sq =c0s? 0p(A1)11+sin2 Op(A4A~1)33+ sin 205(4-1) 3 (36)
which can be evaluated directly.

A=(A4");3 (35)

The isotropic approximation

In the isotropic approximation we assume that we can
consider average velocities for the acoustic modes,
independent of direction. In deriving these average
velocities we need therefore consider only the case in
which the x,y,z axes coincide with those for which the
elastic constants are given and it is not necessary to
carry out the transformation given in equation (27).

For a crystal of cubic symmetry the elastic constants
reduce to three independent non-zero values: cy;
(=c22=cy), c12 (=c13=0¢,3) and cy4 (=cs5=cg5). Equa-
tions (28) therefore reduce to

Ay=alcy+ (@3 +adcu (37a)
Apn=d%ci1+(a}+ad)ca, (37b)
Ayy=d}cn+ (@3 +a)cy 37¢)
Ay =aay(c12+ cuq) 374d)
Ai=aas(cry+ cys) (37¢)
Az =ara3(cr2+ Caq) (37

from which we obtain

(A Nnu=laicd+(a3+ad)cricut+(dla3+a3ad) (cCaatcly)
+a3a3(ci — ¢}, — 2¢12¢4))/ 4 (38a)
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(A™Y53=[(a} +ad)c11cas +adcas+ata3(cd — ¢t — 2¢12Ca0)
+(a2a3+a3a3) (cuicaa+c3y)l/4 (38b)

(A3 =[a?a3(a3 — a3 — a?)cdy + aa3(2a% — a3 — a})ciaCas
—ai@Basen(cz+ cas) Faradasc3))/4, (38¢)
where
=a2a2a3(c3 )+ 2¢3, +4c)—3encd, — 3ck caat 12¢15¢2,
+ 9¢2,¢44— 6C11C12Ca0) +(a2d3 + a2a3 + d3a?) (¢} caa
—2¢1163,— €35Caa— 2012€34) +C11Co4 - 39

If we take the mean value of the numerator and
denominator separately for each (471)z we find that

(A D= (A_I)33
(A )=0,

and substituting the mean values in equation (36) we
obtain:

and (40)

1bi(en+ cro) +caa(en+ caa) 22
T5sb? b2+—lb1(c11+c12)c44+cuc44 s

Sq =%- L(4l)
with

bi=cii—cp—2¢4u

by=cy+2c12+Caa

and the integral for the TDS intensity becomes that
used in the isotropic approximation (Cooper & Rouse,
1968).

A value for S, could be derived similarly for a
pseudo-lsotroplc crystal of any symmetry. However,
this would require, in the general case, the evaluation
of over 1000 separate terms. In order to use an isotropic
approximation in this case it would therefore seem
preferable to estimate effective values of ¢y, ¢12 and
css for use in equation (41), thus assuming a quasi-
cubic symmetry for the elastic properties of the crystal.
However, it should be emphasized that extreme care
should be taken when an isotropic approximation is
used for non-cubic crystals.

Experimental resolution

If we ignore the divergence of the incident beam and
the mosaic spread of the sample then the volume of
integration is defined directly by the ranges of the
angles u, v and w defined by the scan range and the
detector aperture. Both of these factors, however, will
cause a reduction in the TDS contribution to the inte-
grated intensity and we should replace the 1ntegrat10n
over the detector aperture by a weighted integration
over the resolution function.

The resolution function can be considered as the
probability of detection of the radiation as a function
of AQ when the instrument has been set to measure
a scattering process corresponding to the scattering
vector Qu. The determination of the resolution func-
tion of a conventional two-crystal neutron diffrac-
tometer and its application to diffuse scattering have

INTEGRATED BRAGG INTENSITIES

been considered by Cooper & Nathans (1968a,b).
These authors show that if a Gaussian approximation
for the mosaic and collimation functions is valid the
resolution function R(Qo+AQ) can be considered very
conveniently in terms of a resolution matrix My; such
that:
303
R(Qo+AQ)=Ryexp {—% kzl .Zl MuXeXi}, (43)
Z1 =
where X;=4Q0;, X,=40y, X3=40, (Cooper & Na-
thans, 1968a).

However, whatever the form of the resolution func-
tion, it can be determined experimentally by means of
a series of suitable scans through the relevant Bragg
peak (Cooper & Nathans, 1968b). The diffuse intensity
observed at a given setting of the diffractometer is then
given by:

€.1(Qo)=§{§0(Qo+AQ +¢m)
X M (qm)dqm}R(Qo+AQ)AQ (44)

where the scattering cross-section is integrated over
the mosaic spread of the sample M(qm), g being the
reciprocal lattice vector defining translation from the
point of optimum Bragg reflexion.

The nature of the resolution function for an X-ray
diffractometer has been discussed by Cochran (1969).
In this case it is complicated somewhat by the Kay—Ko,
doublet but its determination and application are sim-
ilar to those for the neutron case.

It is clear that integration over the resolution func-
tion at each point on the scan considerably complicates
the evaluation of the TDS correction. However, since
the aperture of the detector will usually be the most
significant factor we can, in general, calculate the TDS
contribution ignoring the other factors and then allow
for these by repeating the calculation with the centre
of the scan at different points in a partial resolution
function centred on the original centre of the scan.

Discussion

In the present paper we have outlined the method of
evaluation of the correction of measured integrated
intensities for thermal diffuse scattering for a crystal
of any symmetry, allowing for the contributions from
one-phonon and two-phonon processes and allowing
for experimental resolution effects. A computer pro-
gram has been written to evaluate the special case of
one-phonon scattering of X-rays for which the analysis
is somewhat simpler. Although the extension of this
program to the general case is relatively straightfor-
ward the computation involved becomes considerable.
In addition the allowance for resolution effects requires
a detailed experimental determination of the resolution
function of the instrument.

TDS corrections evaluated by the procedures de-
scribed here for typical experimental situations will be
discussed in a later paper.
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The authors are indebted to Dr B.T.M. Willis for
pointing out the simplified derivation which can be
used for one-phonon X-ray. scattering and for his in-
terest and encouragement.
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The use of Neutron Resonance Scattering in the Structure Determination of Sm(BrQO;);.,H,O

By S.K.Sikka*
Atomic Energy Research Establishment, Harwell, England

(Received 27 December 1968)

The structure of Sm(BrOs);.9H,0 has been solved by the neutron anomalous-dispersion method,
with the use of data collected at two wavelengths. Five out of eight atoms in the asymmetric unit were
located from the ‘anomalous difference Patterson’ synthesis, and the remaining three from a Fourier
synthesis. The structure is centrosymmetric, and the signs of 78% of the reflexions were determined
correctly from the differences in the Fons values at the two wavelengths.

1. Introduction

It has been known for some time that certain isotopes
(especially 12Cd and 4Sm) when present in crystals,
give rise to resonance scattering of thermal neutrons
and this can be used to solve the phase problem in a
structure analysis from neutron diffraction intensity
data (Peterson & Smith, 1962; Ramaseshan, 1966;
Dale & Willis, 1966). In the first reported application
of this technique (Macdonald & Sikka, 1969), anom-
alous scattering from the Cd atom was utilized to solve
the structure of Cd(NOs),.4D,0. Macdonald & Sikka
showed that the ‘direct phase’ method of Ramachan-
dran & Raman (1956) and the sine Patterson approach
of Okaya, Saito & Pepinsky (1955) can be directly
applied in neutron diffraction. These methods were devi-
sed originally for X-ray diffraction, where the intensities
are measured at one wavelength. This paper is concerned
with the third approach, that of the use of data at two
wavelengths. Peterson & Smith (1962) pointed out that
the real and imaginary parts of the scattering amplitude
for 113Cd and Sm vary with the wavelength of the
neutrons; the measurement of data at two different
wavelengths would then correspond to the replacement
of one atom of the crystal by an atom of different scat-
tering amplitude. In this way the isomorphous replace-
ment method can be used in neutron diffraction.
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The substance chosen to test the suitability of the
two wavelength method was Sm(BrOs);.9H,0. This
choice was dictated largely by the need to obtain a large
singlecrystal, suitableforaneutron study and containing
Sm as the anomalous scatterer. From an experimental
point of view, Sm is preferable to Cd as the anomalous
scatterer since the range of wavelength, over which the
real (bs,) and imaginary (bg,) parts of the scattering
amplitude for the Sm atom vary, lies well within the
experimentally useful region of the thermal neutron
spectrum from a reactor. (For Sm, resonance occurs
at 0-92 A; for Cd it occurs at 0-67 A and on the lower
wavelength side of the Cd resonance the neutron flux
is extremely low.) At the start of this study, it was
thought that this crystal would be isomorphous with
Nd(Br0O;);.9H,0, whose X-ray structure is non-centro-
symmetric (Helmholz, 1939). Later, as no Bijvoet dif-
ferences could be observed from Sm(BrO,);.9H,0, it
was realized that the crystal structure was centro-
symmetric and belonged to a different space group,
P63/mmec, in the hexagonal system.

2. Experimental

Single crystals of Sm(BrO;);.9H,0 were grown by
slow evaporation of an aqueous solution of samarium
bromate. The crystals were pink hexagonal prisms,
bounded by {100} and {101} faces.
Three-dimensional neutron intensity measurements
were made at two wavelengths with the Mark I auto-



